ON MANY-SORTED ALGEBRAIC CLOSURE OPERATORS
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ABSTRACT. A theorem of Birkhoff-Frink asserts that every algebraic closure
operator on an ordinary set arises, from some algebraic structure on the set, as
the operator that constructs the subalgebra generated by a subset. However,
for many-sorted sets, i.e., indexed families of sets, such a theorem is not longer
true without qualification. We characterize the corresponding many-sorted
closure operators as precisely the uniform algebraic operators.

Some theorems of ordinary universal algebra can not be automatically general-
ized to many-sorted universal algebra, e.g., Matthiessen [5] proves that there exist
many-sorted algebraic closure systems that can not be concretely represented as
the set of subalgebras of a many-sorted algebra. As is well known, according to a
representation theorem of Birkhoff and Frink [1], this is not so for the single-sorted
algebraic closure systems.

In [2] it was obtained a concrete representation for the so-called many-sorted
uniform 2-algebraic closure operators. However, as will be proved below, confirming
a conjecture by A. Blass in his review of [2], the main result in [2] remains true if we
delete from the above class of many-sorted operators the condition of 2-algebraicity.
Therefore a many-sorted algebraic closure operator will be concretely representable
as the set of subalgebras of a many-sorted algebra iff it is uniform. We point out
that the proof we offer follows substantially that in Grétzer [4] for the single-sorted
case, but differs from it, among others things, by the use we have to make, on the
one hand, of the concept of uniformity, missing in the single-sorted case, and, on
the other hand, of the Axiom of Choice, because of the lack, in the many-sorted
case, of a canonical choice in the definition of the many-sorted operations.

In what follows we use, for a set of sorts S and an S-sorted signature X, the
concept of many-sorted Y-algebra and subalgebra in the standard meaning, see
e.g., [3]

To begin with, as for ordinary algebras, also the set of subalgebras of a many-
sorted algebra is an algebraic closure system.

Proposition 1. Let A be a many-sorted X-algebra. Then the set of all subalgebras
of A, denoted by Sub(A), is an algebraic closure system on A, i.e., we have
(1) A € Sub(A).
(2) If I is not empty and (X%)ies is a family in Sub(A), then (,c; X' is also
in Sub(A).
(3) If I is not empty and (X%);es is an upwards directed family in Sub(A), then
U;er X is also in Sub(A).

However, as we will prove later on, in the many-sorted case the many-sorted
algebraic closure operator canonically associated to the algebraic closure system
of the subalgebras of a many-sorted algebra has an additional and characteristic
property, that of being uniform.
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Now we recall the concept of support of a sorted set and that of many-sorted
algebraic closure operator on a sorted set, essentials to define that of many-sorted
algebraic uniform closure operator.

Definition 1. Let A be an S-sorted set. Then the support of A, denoted by
supp(A), is the subset {s € S| As #@ } of S.

Definition 2. Let A be an S-sorted set. A many-sorted algebraic closure operator
on A is an operator J on Sub(A), the set of all S-sorted subsets of A, such that,
for every X, Y C A, satisfies:

(1) X C J(X), i.e., J is extensive.

(2) If X CY, then J(X) C J(Y), i.e., J is isotone.
(3) J(J(X)) = J(X), i.e., J is idempotent.
(4) J(X) = Uresups(x) J(F), ie., J is algebraic, where a part F' of X is in
Subg¢(X), the set of finite S-sorted subsets of X, iff supp(F) is finite and,
for every s € supp(F'), F; is finite.

A many-sorted algebraic closure operator J on A is uniform iff, for X, Y C A,

from supp(X) = supp(Y’), follows that supp(J(X)) = supp(J(Y)).

Definition 3. Let A be a many-sorted ¥-algebra. We denote by Sg, the many-
sorted algebraic closure operator on A canonically associated to the algebraic closure
system Sub(A4). If X C A, Sg4(X) is the subalgebra of A generated by X.

Next, as for ordinary algebras, we define for a many-sorted Y-algebra A an
operator on Sub(A) that will allow us to obtain, for every subset of A, by recursion,
an N-ascending chain of subsets of A from which, taking the union, we will obtain an
equivalent, but more constructive, description of the subalgebra of A generated by a
subset of A. Moreover, we will make use of this alternative description to prove the
uniformity of the operator Sg 4 and also in the proof of the representation theorem.

Definition 4. Let A = (A, F) be a many-sorted Y-algebra.

(1) We denote by E 4 the operator on Sub(A) that assigns to an S-sorted subset
X of A, E4(X)=XU ( Uaez.,s FU[Xar(U)])S€S7 where, for s € S, ¥. 5 is
the set of all many-sorted formal operations ¢ such that the coarity of o is
s and for ar(o) = (s;)jem € S*, the arity of o, Xor(o) = [, Xs; -

(2) If X C A, then the family (E{(X))nen in Sub(A) is such that E} (X) = X
and E}" (X) = Ba(E4 (X)), for n > 0.

(3) We denote by E?j the operator on Sub(A) that assigns to an S-sorted subset
X of A, E4(X) = U,en EA(X)

Proposition 2. Let A be a many-sorted X-algebra and X C A. Then we have that
Sga(X) = E4(X).
Proof. See [2] O
Proposition 3. Let A be a many-sorted ¥-algebra and X,Y C A. Then we have
that

(1) Ifsupp(X) = supp(Y'), then, for everyn € N, supp(E’} (X)) = supp(E}(Y)).

(2) supp(Sga(X)) = U, ensupp(E4(X)).

(3) If supp(X) = supp(Y'), then supp(Sga(X)) = supp(Sga(Y)).

Therefore the many-sorted algebraic closure operator Sg, is uniform.

Proof. See [2] O

Finally we prove the representation theorem for the many-sorted uniform alge-
braic closure operators, i.e., we prove that for an S-sorted set A a many-sorted
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algebraic closure operator J on Sub(A) has the form Sg 4, for some S-sorted signa-
ture ¥ and some many-sorted 3-algebra A if J is uniform.

Theorem 1. Let J be a many-sorted algebraic closure operator on an S-sorted
set A. If J is uniform, then J = Sg, for some S-sorted signature ¥ and some
many-sorted S-algebra A.

Proof. Let ¥ = (¥u,5)(w,s)es+xs be the S-sorted signature defined, for every
(w,s) € S* x S, as follows:

Tws ={(X,b) € UXGSub(A)({X} x J(X)s) |Vt € S (card(Xy) = wle) },

where for a sort s € S and a word w: |{w|—=S on S, with |w| the lenght of w, the
number of occurrences of s in w, denoted by |w|s, is card({i € |w| | w(i) = s}).

We remark that for (w,s) € §* x S and (X,b) € Uxegupa)({X} x J(X)s) the

following conditions are equivalent:
(1) (X,b) € s, Le., for every t € S, card(X;) = |w]s.
(2) supp(X) = Im(w) and, for every ¢ € supp(X), card(X;) = |wl;.

On the other hand, for the index set A = Uy cgup,(4)({Y'} X supp(Y')) and the
A-indexed family (Ys)(y,s)en Whose (Y, s)-th coordinate is Y;, precisely the s-th
coordinate of the S-sorted set Y of the index (Y, s) € A, let f be a choice function
for (Ys)(v,s)en, i-e., an element of H(Y’S)GAYS. Moreover, for every w € S* and
a € [Licpw| Aw(iy, let M = (M"*),cs be the finite S-sorted subset of A defined
as M ={a; | i € w™![s]}, for every s € S.

Now, for (w, s) € S*x S and (X, b) € £, 5, let Fx ; be the many-sorted operation
from Hielw\ Ay (i) into Ay that to an a € Hielwl Ay (i) assigns b, if M** = X and
F(J(M™®),s), otherwise.

We will prove that the many-sorted ¥-algebra A = (A, F) is such that J =
Sg4. But before that it is necessary to verify that the definition of the many-
sorted operations is sound, i.e., that for every (w,s) € S* x S, (X,b) € Yus
and a € Hie|w\ Auwiy, s € supp(J(M™)) and for this it is enough to prove that
supp(M**) = supp(X), because, by hypothesis, J is uniform and, by definition,
be J(X)s.

If t € supp(M™%), then M;”" is nonempty, i.e., there exists an i € |w| such that
w(i) = t. Therefore, because (X,b) € X, s, we have that 0 < |w|, = card(X,),
hence t € supp(X).

Reciprocally, if t € supp(X), |w|; > 0, and there is an ¢ € |w| such that w(i) = ¢,
hence a; € Ay, and from this we conclude that M;”“ # &, i.e., that ¢ € supp(M™“*).
Therefore, supp(M™>*) = supp(X) and, by the uniformity of .J, supp(J(M*%)) =
supp(J(X)). But, by definition, b € J(X)s, so s € supp(J(M™*)) and the defini-
tion is sound.

Now we prove that, for every X C A, J(X) C Sg4(X). Let X be an S-sorted
subset of A, s € S and b € J(X),;. Then, because J is algebraic, b € J(Y)s, for
some finite S-sorted subset Y of X. From such an Y we will define a word wy in
S and an element ay of [] Ay iy such that

(1). Y = Mwy-ay,

(2). (Y,b) € £y s, 1€, b€ J(Y), and, for all t € S, card(Y;) = |wy|:, and

(3)- ay € [icpuy | Xwy ()
then, because Fy,(ay) = b, we will be entitled to assert that b € Sg4(X)s.

But taking into account that Y is finite iff supp(Y') is finite and, for every
t € supp(Y), Y; is finite, let {sy | @ € m} be an enumeration of supp(Y) and,
for every a € m, let {ya,i | i € po } be an enumeration of the nonempty s,-th
coordinate, Y;_, of Y. Then we define, on the one hand, the word wy as the

i€|wy | “Fwy (
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mapping from |wy| = ) ., Pa into S such that, for every i € |wy| and a € m,
wy (i) = sa D250, P8 <7< D 5c,41Pp — 1 and, on the other hand, the element
ay of Hie\wy| Ay (i) as the mapping from |wy | into Uie‘wy‘ Ay iy such that, for
every i € |wy| and & € m, ay (i) = Ya,i=S e v iff Zﬁeapﬁ <i< Zﬁelﬂpg -1
From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a
particular case of the fact that the mapping M from U, cq-({w} X [L;cj0) Awin)
into Sub¢(A) that to a pair (w,a) assigns M™* is surjective.

From the above and the definition of Fy,, we can affirm that Fy ,(ay) = b, hence
b € Sg4(X)s. Therefore J(X) C Sg4(X).

Finally, we prove that, for every X C A, Sg,(X) C J(X). But for this, by the
Proposition 2, it is enough to prove that, for every subset X of A, we have that
E4(X) CJ(X). Let s € Sbeand c € E4(X),. If ¢ € X, then ¢ € J(X),, because
J is extensive. If ¢ ¢ X, then, by the definition of E4(X), there exists a word
w € S*, a many-sorted formal operation (Y,b) € ¥,, s and an a € Hie\w| Xw(s) such
that Fy(a) = ¢. If M*® =Y, then ¢ = b, hence ¢ € J(Y)s, therefore, because
M®Ye C X, ce JX)s. If M»* #£Y, then Fyy(a) € J(M™*)s, but, because
M®» C X and J is isotone, J(M™*) is a subset of J(X), hence Fy(a) € J(X)s.
Therefore E4(X) C J(X). O

From this last Theorem and the Proposition 3. we obtain

Corollary 1. Let J be a many-sorted algebraic closure operator on an S- sorted
set A. Then J = Sg, for some many-sorted ¥-algebra A iff J is uniform.
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